UNIT 1: PURE MATHEMATICS Algebra, Geometry and Calculus
(Extract by Boszik from the CAPE 2013 syllabus for Hampton School students; internal use only)

M1: BASIC ALGEBRA AND FUNCTIONS

(a) Reasoning and Logic

1. Identify simple and compound propositions;
2. Establish the truth value of compound statements using truth tables;
3. State the converse, contrapositive and inverse of a conditional (implication) statement;
4. Determine whether two statements are logically equivalent;

(b) The Real Number System - R

1. Perform binary operations;
2. use the concepts of identity, closure, inverse, commutativity, associativity, distributivity of addition and multiplication and other simple binary operations;
3. perform operations involving surds;
4. construct simple proofs, specifically direct proofs, or proof by the use of counter examples;
5. use the summation notation (Σ);
6. establish simple proofs by using the principle of mathematical induction.

(c) Algebraic Operations

1. apply the Remainder Theorem;
2. use the Factor Theorem to find factors and to evaluate unknown coefficients;
3. extract all factors of $a^{n}-b^{n}$ for positive integers $n \leq 6$;
4. use the concept of identity of polynomial expressions.
(d) Exponential and Logarithmic Functions
5. define an exponential function $y=a^{x}$ for $a \in \boldsymbol{R}$;
6. sketch the graph of $y=a^{x}$;
7. define a logarithm function as the inverse of an exponential function;
8. define the exponential function $y=e^{x}$ and its inverse $y=\ln x$, where $\ln x \equiv \log _{\mathrm{e}} x$;
9. use the fact that $y=\ln x \Leftrightarrow x=e^{y}$;
10. simplify expressions by using the laws of logarithms, such as:
(i) $\log (P Q)=\log P+\log Q$,
(ii) $\log (P / Q)=\log P-\log Q$,
(iii) $\log P^{a}=a \log P$;
11. use logarithms to solve equations of the form $a^{x}=b$;
12. solve problems involving changing of the base of a logarithm.

(e) Functions

1. define mathematically the terms: function, domain, range, one-to-one function (injective function), onto function (surjective function), one-to-one and onto function (bijective function), composition and inverse functions;
2. prove whether or not a given function is one-to-one or onto and if its inverse exists;
3. use the fact that a function may be defined as a set of ordered pairs;
4. use the fact that if g is the inverse function of f, then $f[g(x)]=x$, for all x, in the domain of g;
5. illustrate by means of graphs, the relationship between the function $y=f(x)$ given in graphical form and $y=|f(x)|$ and the inverse of $f(\mathrm{x})$, that is $y=f^{-1}(x)$.

(f) The Modulus Function

1. define the modulus function

$$
|x|=\left\{\begin{array}{l}
+x \text { if } x \geq 0 \\
-x \text { if } x<0
\end{array}\right\} ;
$$

2. use the properties:
(a) $|x|$ is the positive square root of x^{2};
(b) $|x|<|y|$ if, and only if, $x^{2}<y^{2}$;
(c) $|\mathrm{x}|<\mathrm{y} \Leftrightarrow$ iff $-y<x<y$;
(d) $|x+y| \leq|y|+|y|$, ("triangular law").
3. solve equations and inequalities involving the modulus functions, using algebraic and graphical methods.

(g) Cubic Functions and Equations

use the relationship between the sums of the roots, the products of the roots, the sum of the product of the roots pair-wise and the coefficients of $a x^{3}+b x^{2}+c x+d=0$.

M2: TRIGONOMETRY, GEOMETRY \& VECTORS

(a) Trigonometric Functions, Identities and Equations (all angles in radians u.o.s.)

1. use the compound-angle formulae for
$\sin (A \pm B), \cos (A \pm B)$ and $\tan (A \pm B) ;$
2. use the reciprocal functions $\sec x, \operatorname{cosec} x$
and $\cot x$;
3. Derive identities for the following:
(a) $\sin \mathrm{kA}, \cos k A$, $\tan k A$, for $k \in \mathbf{Q}$;
(c) $\tan ^{2} x, \cot ^{2} x, \sec ^{2} x$, and $\operatorname{cosec}^{2} x$;
(e) $\sin \mathrm{A} \pm \sin \mathrm{B}, \cos \mathrm{A} \pm \cos \mathrm{B}$.
4. further prove identities of Specific Objective 3;
5. express $a \cos \theta+b \sin \theta$ in the form $r \cos (\theta \pm \alpha)$ and $r \sin (\theta \pm \alpha)$, where r is positive, $0<\alpha<\pi / 2$
6. find the general solution of equations of the forms:
(a) $\sin k \theta=s$,
(b) $\cos k \theta=c$,
(c) $\tan k \theta=t$,
(d) $a \sin \theta+b \cos \theta=c$, for $a, b, c, k, \in \mathbf{R}$;
7. find the solutions of the equations in Specific Objective 6 above for a given range;
8. obtain maximum or minimum values of $f(\theta)=a \cos \theta+b \sin \theta$ for $0 \leq \theta \leq 2 \pi$.

(b) Co-ordinate Geometry

1. find equations of tangents and normals to circles;
2. find the points of intersection of a curve with a straight line;
3. find the points of intersection of two curves;
4. obtain the Cartesian equation of a curve given its parametric representation;
5. obtain the parametric representation of a curve given its Cartesian equation;
6. determine the loci of points satisfying given properties.

(c) Vectors

1. express a vector in the form $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ or $x \boldsymbol{i}+y \mathbf{j}+z \boldsymbol{k}$ where $\mathbf{i}, \boldsymbol{j}$ and \boldsymbol{k} are unit vectors in the x-, y - and z-axis, respectively;
2. define equality of two vectors;
3. add and subtract vectors;
4. multiply a vector by a scalar quantity;
5. derive and use unit vectors, position vectors and displacement vectors;
6. find the magnitude and direction of a vector;
7. find the angle between two given vectors using scalar product;
8. find the equation of a line in (i) vector form $\boldsymbol{p}=\boldsymbol{a}+\lambda \boldsymbol{d}$, (ii) parametric form with λ, or (iii) Cartesian form, given a point A on the line and a vector \boldsymbol{d} parallel to the line; or given 2 points on the line.
9. determine whether two lines are parallel, intersecting, or skewed;
10. find the equation of the plane, in (i) standard vector form $\mathbf{r} . \mathbf{n}=\mathbf{a} . \mathbf{n}=\mathrm{d}$ or (ii) its cartesian form axi $+\mathrm{by} \mathbf{j}+\mathrm{cz} \mathbf{k}=d$, given a point A on the plane and the normal to the plane $\mathbf{n}=\mathrm{ai}+\mathrm{b} \mathbf{j}+\mathrm{ck}$.

M3: CALCULUS I

(a) Limits

1. use graphs to determine the continuity and discontinuity of functions;
2. describe the behaviour of a function $f(x)$ as x gets arbitrarily close to some given fixed number, using a descriptive approach;
3. Use the limit notation

$$
\lim _{x \rightarrow a} f(x)=L, f(x) \rightarrow L \text { as } x \rightarrow a ;
$$

4. use the simple limit theorems:

If $\lim _{x \rightarrow a} f(x)=F, \lim _{x \rightarrow a} g(x)=G$ and k is a
constant, then $\lim _{x \rightarrow a} k f(x)=k F$,
$\lim _{x \rightarrow a} f(x) g(x)=F G, \lim _{x \rightarrow a}\{f(x)+g(x)\}=F+G$,
and, provided $G \neq 0, \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{F}{G}$;
5. use limit theorems in simple problems;
6. use the fact that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, demonstrated by a geometric approach;
7. identify the point(s) for which a function is (un)defined;
8. identify the points for which a function is continuous;
9. identify the point(s) where a function is discontinuous;
10.use the concept of left-handed or right-handed limit, and continuity.

(b) Differentiation I

1. define the derivative of a function at a point as a limit;
2. differentiate, from first principles, such functions as:
(a) $f(x)=k$ where $k \in \boldsymbol{R}$,
(b) $f(x)=x^{n}, n \in\{ \pm 1, \pm 1 / 2, \pm 2, \pm 3\}$,
(c) $f(x)=\sin x$,
(d) $f(x)=\cos x$.
3. use the sum, product and quotient rules for differentiation;
4. differentiate sums, products \& quotients of
(a) polynomials,
(b) trigonometric functions;
5. apply the chain rule in the differentiation
(a) composite functions (substitution),
(b) functions given by parametric equations;
6. solve problems involving rates of change;
7. use the sign of the derivative to investigate where a function is increasing or decreasing;
8. apply the concept of stationary (critical) points;
9. calculate second derivatives;
10. interpret the significance of the sign of the second derivative;
11. use the sign of the second derivative to determine the nature of stationary points;
12. sketch graphs of polynomials, rational functions and trigonometric functions using the features of the function and its first and second derivatives (including vertical and horizontal asymptotes);
13. describe the behaviour of such graphs for large values of the independent variable;
14. obtain equations of tangents and normals to curves.

(c) Integration I

1. recognize integration as the reverse process of differentiation;
2. demonstrate an understanding of the indefinite integral and the use of the integration notation $\int f(x) d x$;
3. show that the indefinite integral represents a family of functions which differ by constants;
4. demonstrate use of the following integration theorems:
(a) $\int c f(x) d x=c \int f(x) d x, c$ is a constant,
(b) $\int\{f(x) \pm g(x)\} d x=\int f(x) d x \pm \int g(x) d x$;
5. find:
(a) indefinite integrals using integration theorems,
(b) integrals of polynomial functions,
(c) integrals of simple trigonometric functions;
6. integrate $\propto u s i n g$ substitution;
7. use the results:
(a) $\int_{a}^{b} f(x) d x=\int_{t a}^{t b} f(t) d t$,
(b) $\int_{a}^{b} f(x) d x=\int_{a+c}^{b+c} f(x-c) d x$,
(b) $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$,
(c) $\int_{a}^{b} f(x) d x=F(b)-F(a)$, where

$$
F^{\prime}(x)=f(x) .
$$

8. apply integration to:
(a) finding areas under the curve,
(b) finding areas between two curves,
(c) finding volumes of revolution by rotating regions about both the x - and y-axes;
9. given a rate of change with or without initial boundary conditions;
(a) formulate a differential equation of the form $y^{\prime}=f(x)$ or $y^{\prime \prime}=f(x)$ where f is a polynomial or a trigonometric function.
(b) solve the resulting differential equation in (a) above and interpret the solution where applicable.
